

Plate Boundaries and the Formation of Mountain Ranges

The Earth's surface is composed of several large and small tectonic plates that constantly shift and interact. These interactions occur at plate boundaries, where the Earth's lithosphere—the rigid outer shell—is either created, destroyed, or deformed. One of the most dramatic results of these interactions is the formation of mountain ranges, which arise primarily through the processes of convergence and collision at specific types of plate boundaries.

There are three primary types of plate boundaries: divergent,

完全版テキストはレッスン前に“教材名”を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.
(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.
Involve plates sliding past one another horizontally. These boundaries are often associated with earthquakes but rarely produce significant topographical changes. It is at convergent boundaries—where plates move toward each other—that mountain building most frequently occurs.

Convergent boundaries can involve oceanic-continental, oceanic-oceanic, or continental-continental plate collisions. In the case of oceanic-continental convergence, the denser oceanic plate is subducted beneath the lighter continental plate. As the oceanic plate descends into the mantle, it melts and generates magma that may rise

to the surface, forming volcanic mountain chains such as the Andes in South America. Oceanic-oceanic convergence functions similarly, giving rise to island arcs like the Aleutian Islands in Alaska.

The formation of the most extensive and elevated mountain ranges, however, is the result of continental-continental convergence. When two continental plates collide, neither is subducted due to their relatively equal density. Instead, the crust is forced upward and outward, crumpling and folding over millions of years. This process gives rise to massive mountain systems such as the Himalayas, which formed from the ongoing collision between the Indian Plate and the Eurasian Plate. These mountains continue to grow today, albeit at a

完全版テキストはレッスン前に“教材名”を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.
(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.

metamorphism, and erosion. Fold mountains, like the Rockies and the Alps, form when rock layers are compressed and bent into waves or folds. Fault-block mountains, such as those in the Basin and Range Province of North America, result when blocks of crust are uplifted along normal faults due to extensional forces.

In addition to tectonic forces, erosion plays a significant role in shaping and maintaining mountain ranges. As mountains are uplifted, they are simultaneously weathered by wind, water, and ice. Rivers and glaciers carve deep valleys and transport sediment to lower elevations, influencing the structure and appearance of mountainous regions. This

interplay between uplift and erosion ensures that mountain ranges are dynamic landscapes, constantly evolving over geological time scales.

Mountains have profound impacts on both regional and global systems. They influence climate by acting as barriers to atmospheric circulation, often creating distinct weather patterns on either side. For instance, the Himalayas block cold, dry air from Central Asia, contributing to the monsoon climate in South Asia. Furthermore, mountain ranges are vital for biodiversity, providing unique habitats for a wide range of plant and animal species that have adapted to specific altitudinal and climatic conditions.

完全版テキストはレッスン前に“教材名”を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.
(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.

landscapes have driven tourism economies in regions like the Alps and the Rockies.

Modern geological tools such as GPS, satellite imaging, and seismic monitoring have enhanced our understanding of mountain formation. By analyzing the rates and directions of plate movement, scientists can predict future changes in topography and assess seismic hazards. These technologies help geologists reconstruct past plate movements, offering insights into the Earth's dynamic history.

Despite the stability we perceive in landscapes, the Earth's surface is in a constant state of flux. Plate tectonics and the resulting formation of

mountain ranges serve as a powerful reminder of the immense forces operating beneath our feet. Understanding these processes not only satisfies human curiosity but also informs decisions related to hazard mitigation, environmental conservation, and sustainable development.

Questions

1. The word "**deformed**" in paragraph 1 is closest in meaning to:
 - shaped irregularly
 - separated
 - strengthened

完全版テキストはレッスン前に “教材名” を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.
(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.

2. The continental plate is subducted beneath the oceanic plate.
A. The continental plate is subducted beneath the oceanic plate.
B. The oceanic plate melts and may create volcanic mountain chains.
C. A new ocean basin forms.
D. A fault-block mountain range is created.

3. The word "**persistent**" in paragraph 4 is closest in meaning to:
 - aggressive
 - temporary
 - continuing
 - dangerous

4. According to paragraph 4, why do continental-continental collisions form high mountain ranges?

- A. Continental plates are thinner and easily subducted.
- B. The oceanic crust pushes the continental crust upward.
- C. Neither plate is subducted, so the crust crumples and rises.
- D. Erosion rapidly shapes the terrain into mountains.

5. The word "uplift" in paragraph 5 is closest in meaning to:

- A. destruction

完全版テキストはレッスン前に“教材名”を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.
(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.

6. Which of the following best expresses the essential information in the highlighted sentence from paragraph 5?

“Fold mountains, like the Rockies and the Alps, form when rock layers are compressed and bent into waves or folds.”

- A. Rock layers bend due to volcanic activity, creating fold mountains such as the Rockies.
- B. Fold mountains like the Rockies and the Alps develop from rock layers that are pressed together and warped.
- C. Rock layers stretch and break apart, leading to the formation of mountain ranges like the Rockies and Alps.

D. Erosion and uplift combine to produce fold mountains such as the Alps.

7. The word "interplay" in paragraph 6 is closest in meaning to:

- A. difference
- B. reaction
- C. combination
- D. interaction

8. According to paragraph 7 why are mountain ranges important for

完全版テキストはレッスン前に“教材名”を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.

(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.

D. They act as natural barriers against predators.

9. What can be inferred from paragraph 8 about the role of mountains in human life?

- A. Mountain regions are mainly avoided due to harsh climates.
- B. Mountains have only aesthetic value and limited utility.
- C. Mountains provide essential resources and economic benefits.
- D. Most major cities are located within mountain ranges.

10. Which of the following is **NOT** mentioned in the article as a factor in mountain formation or development?

- A. Volcanic activity
- B. Glacial erosion
- C. Human construction
- D. Plate collision

Answers

1. The word "deformed" in paragraph 1 is closest in meaning to:

Correct Answer: A

完全版テキストはレッスン前に “教材名” を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.
(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.

3. The word "persistent" in paragraph 4 is closest in meaning to:

Correct Answer: C

4. According to paragraph 4, why do continental-continental collisions form high mountain ranges?

Correct Answer: C

5. The word "uplift" in paragraph 5 is closest in meaning to:

Correct Answer: B

6. Which of the following best expresses the essential information in the highlighted sentence from paragraph 5?

Correct Answer: B

7. The word "interplay" in paragraph 6 is closest in meaning to:

Correct Answer: D

完全版テキストはレッスン前に“教材名”を講師に伝えてください。
(リンクだけ送っても講師には伝わりません。)

伝え方: スカイプチャット or 予約時のコメント欄に記入

Please inform your teacher “name of the material” before the lesson.

(Sending a link won't convey the message.)

How to inform: Write it in the Skype chat or the comments section when making a reservation.

9. What can be inferred from paragraph 8 about the role of mountains in human life?

Correct Answer: C

10. Which of the following is NOT mentioned in the article as a factor in mountain formation or development?

Correct Answer: C